多分支结构强化表征能力的CapsNet方法

全文链接:10.15888/J.CNKI.CSA.006815

CNKI 提供的 DOI 服务无响应,全文链接变更到期刊网页


多分支结构强化表征能力的CapsNet方法

谢海闻, 叶东毅, 陈昭炯
(福州大学 数学与计算机科学学院, 福州 350108)

Multi-Branches CapsNet Method with Enhanced Representation Capability

XIE Hai-Wen, YE Dong-Yi, CHEN Zhao-Jiong
(College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China)

中文摘要: CapsNet是一种新的目标识别模型,通过动态路由和capsule识别已知目标的新形态.针对CapsNet的解码器输入层规模随类别数增加而增加,可延展性较弱的问题,本文提出多分支自编码器模型.该模型将各个类别的编码分别传递给解码器,使解码器规模独立于类别数,增强了模型的可延展性.针对单类别图像训练多类别图像识别任务,本文增加新的优化目标降低非标签类别的编码向量对解码器的激励,强化了模型的表征能力.MNIST数据集的实验结果表明,多分支自编码器具有良好的识别能力且重构能力明显优于CapsNet,因而具有更全面的表征能力.
中文关键词: 目标识别 ; 目标重构 ; CapsNet ; 表征提取 ; MNIST

Abstract:A novel neural network for object recognition, CapsNet, uses dynamic routing and capsules to recognize novel state of a known object, while the input layer of CapsNet decoder increases when the number of categories increases, which means a relatively limited scalability. To overcome this weakness, we propose the Multi-branches Auto-Encoder (MAE) which gives coding vectors of every class to the decoder respectively letting the scale of decoder independent from the number of categories enhancing the representation capability of the proposed model. The experiment on MNIST shows that MAE is competitive in recognition and more powerful in reconstruction which means a more complete capability on representation.
keywords: object recognition ; object reconstruction ; CapsNet ; representation extracting ; MNIST

基金项目: 国家自然科学基金(61672158);福建省自然科学基金(2018J1798);福建省高校产学合作项目(2018H6010)


引用文本:
谢海闻,叶东毅,陈昭炯.多分支结构强化表征能力的CapsNet方法.计算机系统应用,2019,28(3):111-117
XIE Hai-Wen,YE Dong-Yi,CHEN Zhao-Jiong.Multi-Branches CapsNet Method with Enhanced Representation Capability.COMPUTER SYSTEMS APPLICATIONS,2019,28(3):111-117

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据